Many scientists describe a "transition metal" as any element in the d-block of the periodic table, which includes groups 3 to 12 on the periodic table. In actual practice, the f-block lanthanide and actinide series are also considered transition metals and are called "inner transition metals".
Transition metal compounds are paramagnetic when they have one or more unpaired d electrons. The transition metals and their compounds are known for their homogeneous and heterogeneous catalytic activity. This activity is ascribed to their ability to adopt multiple oxidation states and to form complexes.
As implied by the name, all transition metals are metals and thus conductors of electricity. In general, transition metals possess a high density and high melting points and boiling points. These properties are due to metallic bonding by delocalized d electrons, leading to cohesion which increases with the number of shared electrons. However the group 12 metals have much lower melting and boiling points since their full d sub-shells prevent d–d bonding, which again tends to differentiate them from the accepted transition metals.
|